Phytochemistry 1974 Vol 13 pp 308 to 309 Pergamon Press Printed in England

DITERPENOIDS FROM CLERODENDRON CALAMITOSUM

SHIGEKI HOSOZAWA, NATSUKI KATO and KATSURA MUNAKATA

Department of Agricultural Chemistry Nagova University Nagoya Japan

(Received 13 August 1973 Accepted 24 August 1973)

Key Word Index—Clerodendron calamitosum Verbenaceae, diterpenoid 3-epicarvoptin antifeeding compound

Previously we reported the isolation and structural elucidation of six insect antifeeding diterpenoids including the principal diterpenoid caryoptin (1) from the ground leaves and stems of *Caryopteris divaricata* Maxim ¹ In further scrutiny of diterpenoids having the same skeleton as clerodin (2)¹ ⁴ in plants of the Verbenaceae, we have obtained a new diterpenoid 3-epicaryoptin (3) from *Clerodendron calamitosum* L. It is interesting in view of biogenesis that caryoptin is not found but 3-epicaryoptin is observed in this plant. This new compound has a bitter taste and possesses antifeeding activity against the larvae of *Spodoptera litura* F.

Ether extracts of the air dried leaves of *Clerodendron calamitosum* gave an antifeeding compound as main component by column chromatography on alumina (Brockmann grade V gradient elution with $Et_2O-C_6H_6$) and silica gel. This compound and carvoptin were shown to be closely related chemically from spectroscopic data 3-Epicaryoptin (3) (0.01°_{o}) yield on air dried bases) had, m.p. 171-172, $[\alpha]_D - 70$ (ϵ 1.01, CHCl₃) and v_{max} (KBr) 1735, 1620–1250, 1240 cm⁻¹ (Calcd for $C_{26}H_{36}O_9$ –C 63 40, H 7.37 Found C, 63 51, H, 7.31 $^{\circ}_{o}$)

(3) contained one tertiary methyl, one secondary methyl group and three acetate residues. The NMR spectrum showed the two AB quartets, a primary carbinol methylene

¹ HOSOZAWA S KATO N and MUNAKATA K (1973) Phytochemistry 12, 1833

² SIM G A HAMOR T A PALL I C and MONITATH ROBERTSON I (1961) Pro Chem Soc 75

³ Barton D.H.R. Cheng N. I. Cross A.D. Jackman L.M. and Martin Smith, M. (1961) *Proc. Chem. Soc.* 76 (1961) *J. Chem. Soc.* 5061

⁴ PAUL LC SIM G. A. HAMOR T. A. and MONTHEATH ROBERTSON, J (1962) J. Chem. Soc. 4133

group at δ 4 79 and 4 38 ppm (18-H₂, J 12 5 Hz), and an epoxide methylene group at δ 2 84 and 2 59 ppm (17-H₂, J 4 5), a double doublet at δ 5 30 ppm (J 12 0, 5 0) due to an axial C-3 proton, and a broad signal overlapping other absorption at δ 4 65–4 85 ppm based on an axial C-6 proton. The presence of a tetrahydrofurofuran ring was shown by the following data. The triplet signals characteristic of the dihydrofuran ring showed δ 4 81 and 6 49 ppm (14- and 15-H, J 20). A doublet at the down-field (δ 6 02 ppm, J 6 5 Hz), a double doublet at δ 4 02 ppm (J 10 0, 6 5 Hz), and a broad signal centered at δ 3 59 ppm (W 1/2 ca 15 Hz) were assigned to C-16, C-11 and C-13 protons, respectively, commonly observed in the compounds containing furofuran rings 1,3,5

Catalytic reduction of (3) with Pd-C(10%) gave a dihydroderivative (4), mp 161–162°, $[\alpha]_{\rm p}$ –42° (c 1 04, CHCl₃) In the NMR spectrum of (4), C-15 methylene protons appeared at δ 3 85 ppm as a doublet (J 7 5 Hz) and at δ 3 92 ppm as a broad doublet (J 7 5 Hz) MS of (3) and (4) showed characteristic intense fragment peaks at m/e 111 and 113, respectively, attributed to the furofuran ring

The position and configuration of the 3α -acetoxyl group was revealed from analysis of the NMR spectra and further confirmed by the following studies A dihydrotetraol derivative (5) obtained by reduction of (4) with LiAlH₄ slowly consumed one equivalent of NaIO₄ in MeOH–H₂O. It was found that C-3–C-4 bond fission had occurred in (5), since the resulting keto-aldehyde derivative (6) exhibited carbonyl absorption at v_{max} (CHCl₃) 1700 and 1720 cm⁻¹ and aldehydic proton and methyl ketone signals at δ 9.75 and 2.40 ppm, respectively (6) was identified as keto-aldehyde derivative derived from dihydrocaryoptin (7) by comparison with authentic sample using spectroscopic data and specific rotation, $[\alpha]_D + 18^\circ$ (c 0.34, CHCl₃)

In addition, the optical rotation of the compounds having tetrahydro furofuran ring paralleled the rotations of compounds containing dihydrofuran ring. In the clerodin series, clerodin had $[\alpha]_D - 53^\circ$, 3-epicaryoptin had $[\alpha]_D - 70^\circ$, caryoptin had $[\alpha]_D - 91^\circ$, dihydro derivative series, dihydroclerodin-I had $[\alpha]_D - 17^\circ$, 3-epidihydrocaryoptin had $[\alpha]_D - 42^\circ$, dihydrocaryoptin had $[\alpha]_D - 63^\circ$. These experimental data supported that the absolute configuration of 3-epicaryoptin may be the same as that of clerodin except at C-3 position

Acknowledgements—We thank Professor Yuh-Lin Chen Department of Agricultural Chemistry National Taiwan University Taiper Republic of China for kindly providing air-dried plant of Clerodendron calamitosum

⁵ KATO, N, SHIBAYAMA, S and MUNAKATA, K (1971) Chem Commun 1632, (1973) J C S Perkin I, 712